
A NEW NORMAL FORM FOR PROGRAMMED GRAMMARS

Lukáš Vrábel
Doctoral Degree Programme (1), FIT BUT

E-mail: xvrabe01@stud.fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract: In the present paper, we discuss programmed grammars. We investigate the effect of the
number of rules with more than one successor on generative power of the programmed grammars.
We prove that for every programmed grammar, there is an equivalent programmed grammar where
only a single rule has more than one successor.

Keywords: Programmed grammar, complexity, normal form, successor

1 INTRODUCTION

In the formal language theory, programmed grammars have been thoroughly investigated (see [1, 2, 4–
6] for recent studies). Although various properties of these grammars have been well established, the
effect of rules with more than one successor has not been investigated to its full extent. In [1] and [2],
it is proved that (a) to generate an infinite language, there has to be at least one rule with more than one
successor, and (b) any programmed grammar can be converted to an equivalent programmed grammar
with every rule having at most two successors. However, there has been no study of maximum needed
number of rules with more than one successor.

In this paper, we introduce a new normal form for programmed grammars, called the one-ND rule
normal form (ND stands for nondeterministic), where at most one rule has more than one successor.
We prove that every programmed grammar can be converted to this form.

2 DEFINITIONS

This paper assumes that the reader is familiar with the theory of formal languages (see [7]), including
the theory of regulated rewriting (see [3]). For a set, Q, card(Q) denotes the cardinality of Q, and 2Q

denotes the power set of Q. For an alphabet, V , V ∗ represents the free monoid generated by V under
the operation of concatenation. The unit of V ∗ is denoted by ε. Set V+ =V ∗−{ε}; algebraically, V+

is thus the free semigroup generated by V under the operation of concatenation.

Definition 1. A programmed grammar (see [3, 8]) is a quintuple, G = (N, T , S, Ψ, P), where N is the
alphabet of nonterminals, T is the alphabet of terminals, N∩T = /0, S ∈N is the start symbol, Ψ is the
alphabet of rule labels, and P⊆Ψ×N×(N∪T )∗×2Ψ is a finite relation such that card(Ψ)= card(P),
and for (r,A,x,σr),(q,B,y,σq) ∈ P, if (r,A,x,σr) 6= (q,B,y,σq), then r 6= q.

Elements of P are called rules. Instead of (r,A,x,σr) ∈ P, we write br : A→ x,σrc ∈ P throughout
this paper. For br : A→ x,σrc ∈ P, A is referred to as the left-hand side of r, and x is referred to as the
right-hand side of r. Let V =N∪T be the total alphabet. G is propagating if every br : A→ x,σrc ∈P
satisfies x ∈V+. Rules of the form br : A→ ε,σrc are called erasing rules.

The relation of a direct derivation, symbolically denoted by ⇒, is defined over V ∗×Ψ as follows:
for (x1,r),(x2,s) ∈V ∗×Ψ, (x1,r)⇒ (x2,s) (or (x1,r)⇒G (x2,s), if there is a danger of confusion) if
and only if x1 = yAz, x2 = ywz, br : A→ w,σrc ∈ P, and s ∈ σr.



Let br : A→ w,σrc ∈ P. Then, σr is called the success field of r. Let⇒n,⇒∗, and⇒+ denote the nth
power of⇒, for some n ≥ 0, the reflexive-transitive closure of⇒, and the transitive closure of⇒,
respectively. Let (S,r)⇒∗ (w,s), where r,s ∈ Ψ and w ∈ V ∗. Then, (w,s) is called a configuration.
The language generated by G is denoted by L(G) and defined as L(G) = {w ∈ T ∗ | (S,r)⇒∗ (w,s),
for some r,s ∈Ψ}. �

Definition 2. Let G = (N, T , S, Ψ, P) be a programmed grammar. G is in the one-ND rule normal
form (ND stands for nondeterministic) if at most one br : A→ x,σrc ∈ P satisfies card(σr) ≥ 1 and
every other br : A→ x,σrc ∈ P satisfies card(σr)≤ 1. �

3 RESULTS

The following algorithm converts any programmed grammar, G, to an equivalent programmed gram-
mar in the one-ND rule normal form, G′. To give an insight into this conversion, we first explain the
underlying idea behind it. First, we introduce the only nondeterministic rule of G′, bX : #→ #,σXc.
Obviously, each nondeterministic choice of some rule br : A→ x,{s1,s2, . . . ,sn}c of G has to be sim-
ulated using X . To ensure proper simulation, we have to satisfy that (i) one of si is applied after r, and
(ii) no other rules can be applied after r.

To satisfy both of the requirements, we introduce a special nonterminal symbol, 〈r〉, for each rule r of
G. These symbols are used to store the information about the last applied rule in a derivation. Then,
for each successor of r, si, we introduce the following sequence of rules:

• br : A→ x,{rσ}c to simulate r,

• brσ : 〈 /0〉 → 〈r〉,{X}c to preserve the information that r was the last applied rule,

• X to make a nondeterministic choice of the successor of r, and

• b〈rB si〉 : 〈r〉 → 〈 /0〉,{si}c to check if r was the last rule of G applied in a derivation before this
rule.

Note that if X chooses some 〈pBq〉 with p 6= r instead, the derivation gets blocked because 〈p〉 is not
present in the current sentential form. Finally, to derive a string of terminals, we have to introduce a
nondeterministic choice to erase 〈r〉 and #. This is done by rules introduced in (3) in the algorithm.

Algorithm 1. Conversion of any programmed grammar to the one-ND rule normal form.

Input: A programmed grammar G = (N, T , S, Ψ, P).

Output: A programmed grammar in the one-ND rule normal form, G′ = (N′,T,S′,Ψ′,P′), such that
L(G′) = L(G).

Method: Initially, set:

N′ = N∪{#,〈 /0〉,S′}∪{〈rσ〉 | r ∈Ψ};
Ψ′ = Ψ∪{X} with X being a new unique symbol;

P′ = {br : A→ x,σrc | br : A→ x,σrc ∈ P,card(σr) = 1} ∪ {bX : #→ #,σXc} with σX

initially set to /0.

Now, apply the following three steps:

(1) for each br : A→ ω,σrc ∈ P satisfying card(σr)> 1:



(1.1) add br : A→ ω,{rσ}c to P′,
(1.2) add brσ : 〈 /0〉 → 〈rσ〉,{X}c to P′, and rσ to Ψ′,
(1.3) for each q ∈ σr, add b〈rBq〉 : 〈rσ〉→ 〈 /0〉,{q}c to P′, 〈rBq〉 to Ψ′, and 〈rBq〉 to σX ;

(2) for each br : S→ ω,σrc ∈ P′:
(2.1) add brs : S′→ #〈 /0〉S,{r}c to P′,
(2.2) add brs f : S′→ S,{r}c to P′,
(2.3) add rs and rs f to Ψ′;

(3) for each b〈pBq〉 : 〈p〉 → 〈 /0〉,{q}c ∈ P′ satisfying 〈pBq〉 ∈ σX :
(3.1) add b〈pBq, f1〉 : 〈p〉 → ε,{〈pBq, f2〉}c to P′,
(3.2) add b〈pBq, f2〉 : #→ ε,{q}c to P′,
(3.3) add 〈pBq, f1〉 to σX ,
(3.4) add 〈pBq, f1〉 and 〈pBq, f2〉 to Ψ′; �

Lemma 1. Algorithm 1 is correct.

Proof. Clearly, the algorithm always halts and G′ is in the one-ND rule normal form. To establish
L(G) = L(G′), we first prove L(G) ⊆ L(G′) by showing how derivations of G are simulated by G′,
and then we prove L(G′)⊆ L(G) by showing how every s ∈ L(G′) can be generated by G.

Set V = N ∪T and N̄ = N′−N. Observe that all strings derived from S′ in G′ are of the form #〈z〉u,
#u, or u, where 〈z〉 ∈ N̄, u ∈V ∗.

Due to the size constraint of this paper, the proofs of the following three claims are left to the reader.

Claim 1. If (u,r)⇒G (w,q), then (#〈 /0〉u,r)⇒∗G′ (#〈 /0〉w,q), where u,w ∈V ∗, r,q ∈Ψ.

Claim 2. If (S′,α)⇒∗G′ (#〈z〉w,q), where α,q ∈ Ψ′,w ∈ V ∗, and 〈z〉 ∈ N̄, then (S′,α′)⇒∗G′ (w,q′),
where α′,q′ ∈Ψ′.

Claim 3. If (S′,α′)⇒∗G′ (w,q′), then (S′,α)⇒∗G′ (#〈 /0〉w,q), where α, α′, q′ ∈Ψ′, q ∈Ψ, and w ∈V ∗.

Claim 1 establishes the relation between the derivation step in G and its counterpart in G′. Claims 2
and 3 show the relation between w ∈V ∗ derived in G′ from S′, and its corresponding sentence form,
#〈z〉w, containing the symbol used to preserve the information about the last rule applied in a deriva-
tion.

Following claim demonstrates how derivations of G are simulated by G′.

Claim 4. Let (S,r)⇒m
G (w,q), where r,q ∈Ψ, w ∈V ∗, for some m≥ 1. Then, (S′,rs)⇒∗G′ (#〈 /0〉w,q),

where rs ∈Ψ′.

Proof. This claim is established by induction on m, m≥ 1.

Basis. Let m = 1. Then, (S,r)⇒G (w,q) by some r ∈ Ψ. By Claim 1, (#〈 /0〉S,r)⇒∗G′ (#〈 /0〉w,q).
Since r has S on its left-hand side, brs : S′→ #〈 /0〉S,{r}c ∈ P′ by (2.1), so (S′,rs)⇒G′ (#〈 /0〉S,r)⇒∗G′
(#〈 /0〉w,q). Thus, the basis holds.

Induction Hypothesis. Suppose that the claim holds for all derivations of length l or less, where l ≤m,
for some m≥ 1.

Induction Step. Consider any derivation of the form (S,r)⇒m+1
G (w,q), where w ∈ V ∗ and r,q ∈ Ψ.

Since m+1≥ 1, this derivation can be expressed as (S,r)⇒m
G (x, p)⇒G (w,q), where x ∈V ∗, p ∈Ψ.

By the induction hypothesis, (S′,rs)⇒∗G′ (#〈 /0〉x, p), and by Claim 1, (#〈 /0〉x, p)⇒∗G′ (#〈 /0〉w,q). Thus,
the claim holds.



Now, we show that for each derivation of #〈 /0〉u in G′, there is a derivation of u in G, which will be
later used to prove L(G′)⊆ L(G).

Claim 5. If (S′,rs)⇒m
G′ (#〈 /0〉u,q), for some m≥ 1, then (S,r)⇒∗G (u,q), where r,q ∈Ψ, rs ∈Ψ′, and

u ∈V ∗.

Proof. This claim is established by induction on m, m≥ 1.

Basis. Let m = 1. Then, (S′,rs)⇒G′ (#〈 /0〉S,r). As rs is created in (2.1) from r ∈Ψ, (S,r)⇒0
G (S,r),

so the basis holds.

Induction Hypothesis. Suppose that the claim holds for all derivations of length l or less, where l ≤m,
for some m≥ 1.

Induction Step. Consider any (S′,rs)⇒m+1
G′ (#〈 /0〉u,q), where u ∈V ∗ and rs,q ∈Ψ. Since m+1≥ 2,

this derivation can be expressed as

(S′,rs)⇒m
G′ (#〈z〉v, p′)⇒G′ (#〈 /0〉u,q),

where v ∈ V ∗, 〈z〉 ∈ N̄, and p′ ∈ Ψ′. As Ψ ⊆ Ψ′, there are two cases, (i) and (ii), based on whether
p′ ∈Ψ or p′ ∈Ψ′−Ψ:

(i) Assume that p′ ∈Ψ. As q ∈Ψ, bp′ : A→ x,{q}c ∈ P′ is one of the rules created in the initial-
ization part of the algorithm, so it is also in P. Therefore, (v, p′)⇒G (u,q) and 〈z〉 = 〈 /0〉. By
the induction hypothesis, (S,r)⇒∗G (v, p′), so (S,r)⇒∗G (u,q). Thus, the claim holds for this
case.

(ii) Assume that p′ ∈Ψ′−Ψ. As q ∈Ψ, p′ has to be one of the 〈pBq〉 created in (1.3) from some
bp : A→ x,σpc ∈ P (observe that only rules created in (1.3) have their label in Ψ′−Ψ and have
some q ∈Ψ in their success field). As b〈pBq〉 : 〈p〉 → 〈 /0〉,{q}c has 〈p〉 on its left-hand side,
〈z〉= 〈p〉 and v = u. Since the only success field containing 〈pBq〉 is σX , the derivation has to
be of the form

(S′,rs)⇒m−1
G′ (#〈p〉u,X)⇒G′ (#〈p〉u,〈pBq〉)⇒G′ (#〈 /0〉u,q).

Note that X is only in the success field of rules created in (1.2). Furthermore, note that 〈p〉 can
be generated only rules created in (1.2). So, there has to be bpσ : 〈 /0〉 → 〈p〉,{X}c ∈ P′, created
in (1.2), such that the derivation can be expressed as

(S′,rs)⇒m−2
G′ (#〈 /0〉u, pσ)⇒G′ (#〈p〉u,X)⇒2

G′ (#〈 /0〉u,q).

As pσ was created from bp : A→ x,σpc ∈ P, where A ∈ N and x ∈ V ∗, there is corresponding
bp : A→ x,{pσ}c ∈ P′, and it is the only rule containing pσ in its success field. Therefore, the
derivation can be expressed as

(S′,rs)⇒m−3
G′ (#〈 /0〉v′, p)⇒G′ (#〈 /0〉u, pσ)⇒3

G′ (#〈 /0〉u,q),

where v′ ∈ V ∗. Since bp : A→ x,σpc ∈ P, (v′, p)⇒G (u,q). By the induction hypothesis,
(S,r)⇒∗G (v′, p), so (S,r)⇒∗G (u,q). Thus, the claim holds for this case.

Observe, that these two cases cover all possible forms of (S′,rs)⇒∗G′ (#〈 /0〉u,q). Thus, the claim
holds.



To establish L(G) = L(G′), it suffices to show the following two statements:

• by Claim 4, for each (S,r)⇒∗G (u,q), where r,q∈Ψ, and u∈ T ∗, there is (S′,rs)⇒∗G′ (#〈 /0〉u,q),
where rs ∈Ψ′. Then, (S′,r′)⇒∗G′ (u,q′) by Claim 2, so L(G)⊆ L(G′).

• by Claim 3, for each (S′,r′)⇒∗G′ (u,q′), where r′,q′ ∈ Ψ′ and u ∈ T ∗, there is (S′,rs)⇒∗G′
(#〈 /0〉u,q), where rs ∈ Ψ′ and q ∈ Ψ. Then, (S,r)⇒∗G (u,q), where r ∈ Ψ, by Claim 5, so
L(G′)⊆ L(G).

As L(G)⊆ L(G′) and L(G′)⊆ L(G), L(G) = L(G′), so the lemma holds.

The following theorem represents the main achievement of this paper.

Theorem 1. For any programmed grammar, G, there is a programmed grammar in the one-ND rule
normal form, G′, such that L(G′) = L(G).

Proof. This theorem follows from Algorithm 1 and Lemma 1.

4 CONCLUSION

In this section, we present some open problems. First, consider programmed grammars with appear-
ance checking (see [3]). Throughout this paper, we have investigated only programmed grammars
without appearance checking. Does the achieved result also hold in terms of programmed grammars
with appearance checking?

Second, observe that Algorithm 1 introduces erasing rules to G′, even if the input grammar is propa-
gating. Can the algorithm be modified in such way, that when G is propagating, then so is G′?

REFERENCES

[1] M. Barbaiani, C. Bibire, J. Dassow, A. Delaney, S. Fazekas, M. Ionescu, G. Liu, A. Lodhi, and
B. Nagy. The power of programmed grammars with graphs from various classes. Journal of
Applied Mathematics & Computing, 22(1–2):21–38, 2006.

[2] H. Bordihn and M. Holzer. Programmed grammars and their relation to the LBA problem. Acta
Informatica, 43(4):223–242, 2006.

[3] J. Dassow and G. Păun. Regulated Rewriting in Formal Language Theory. Springer, 1989.

[4] H. Fernau. Nonterminal complexity of programmed grammars. Theoretical Computer Science,
296(2):225–251, 2003.

[5] H. Fernau, R. Freund, M. Oswald, and K. Reinhardt. Refining the nonterminal complexity of
graph-controlled, programmed, and matrix grammars. Journal of Automata, Languages and
Combinatorics, 12(1–2):117–138, 2007.

[6] H. Fernau and F. Stephan. Characterizations of recursively enumerable sets by programmed
grammars with unconditional transfer. Journal of Automata, Languages and Combinatorics,
4(2):117–152, 1999.

[7] A. Meduna. Automata and Languages: Theory and Applications. Springer, London, 2000.

[8] D. J. Rosenkrantz. Programmed grammars and classes of formal languages. Journal of the
ACM, 16(1):107–131, 1969.


